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Abstract
How does the evolution of bioinformatics tools impact the biological interpretation 
of high-throughput sequencing datasets? For eukaryotic metabarcoding studies, in 
particular, researchers often rely on tools originally developed for the analysis of 16S 
ribosomal RNA (rRNA) datasets. Such tools do not adequately account for the com-
plexity of eukaryotic genomes, the ubiquity of intragenomic variation in eukaryotic 
metabarcoding loci, or the differential evolutionary rates observed across eukaryotic 
genes and taxa. Recently, metabarcoding workflows have shifted away from the use 
of operational taxonomic units (OTUs) toward delimitation of amplicon sequence 
variants (ASVs). We assessed how the choice of bioinformatics algorithm impacts the 
downstream biological conclusions that are drawn from eukaryotic 18S rRNA meta-
barcoding studies. We focused on four workflows including UCLUST and VSearch al-
gorithms for OTU clustering, and DADA2 and Deblur algorithms for ASV delimitation. 
We used two 18S rRNA datasets to further evaluate whether dataset complexity had 
a major impact on the statistical trends and ecological metrics: a “high complexity” 
(HC) environmental dataset generated from community DNA in Arctic marine sedi-
ments, and a “low complexity” (LC) dataset representing individually barcoded nema-
todes. Our results indicate that ASV algorithms produce more biologically realistic 
metabarcoding outputs, with DADA2 being the most consistent and accurate pipe-
line regardless of dataset complexity. In contrast, OTU clustering algorithms inflate 
the metabarcoding-derived estimates of biodiversity, consistently returning a high 
proportion of “rare” molecular operational taxonomic units (MOTUs) that appear to 
represent computational artifacts and sequencing errors. However, species-specific 
MOTUs with high relative abundance are often recovered regardless of the bioinfor-
matics approach. We also found high concordance across pipelines for downstream 
ecological analysis based on beta-diversity and alpha-diversity comparisons that 
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1  |  INTRODUC TION

Over the last ten years, there has been a rapid expansion of me-
tabarcoding methods applied toward the study of eukaryotic taxa. 
These studies typically utilize loci such as the cytochrome c oxidase 
subunit I gene (COI) or other mitochondrial genes (e.g., 12S) for large 
vertebrates and macroinvertebrates (Arribas et al., 2016; Elbrecht & 
Leese, 2017; Hebert et al., 2003; Leray & Knowlton, 2016; Machida 
et al., 2012), the 18S or 28S ribosomal RNA (rRNA) nuclear genes 
for microbial invertebrates and single-celled eukaryotes (Creer et al., 
2010; Pawlowski et al., 2012), ITS rRNA loci for fungi (Lindner et al., 
2013; Toju & Baba, 2018), or the rbcL and matK plastid genes for 
plants and algae (Akita et al., 2019; Bell et al., 2017; Group et al., 
2009; Wolf & Vis, 2020). Since metabarcoding studies utilize high-
throughput sequencing (HTS) technologies (e.g., Illumina sequenc-
ing) and PCR primers that amplify a broad range of taxa from 
numerous samples at once, the resulting datasets have provided 
unprecedented biodiversity insights that have quickly expanded our 
understanding of spatio-temporal patterns and ecological interac-
tions in diverse environments (Bik, Porazinska et al., 2012; Deiner 
et al., 2017; Zinger et al., 2019).

The massive amount of data produced by HTS platforms, how-
ever, requires stringent quality control steps to differentiate real 
biological reads from erroneous sequences. Proper study design 
is paramount for drawing robust biological and ecological con-
clusions from metabarcoding datasets (Abellan-Schneyder et al., 
2021; Alberdi et al., 2018; Murray et al., 2015). However, even the 
most well-designed studies can contain artifacts stemming from 
PCR, sequencing errors (e.g., Illumina “tag bleeding”), run batch 
effects (Fidler et al., 2020; Leek et al., 2012; Schnell et al., 2015), 
and microbial contamination (e.g., introduced via kit reagents, 
[Salter et al., 2014]). While some of these artifacts can be detected 
and bioinformatically eliminated via the incorporation of rigorous 
control samples (e.g., DNA extraction blanks, PCR negative con-
trols, and mock community standards, [Alberdi et al., 2018; Deiner 
et al., 2017; Hornung et al., 2019]) and data cleaning software (e.g., 
Decontam, microDecon, [Davis et al., 2018; McKnight et al., 2019]), 
other “artifacts” appear to result from the biological nuances of 
the chosen metabarcoding locus (i.e., differential patterns of gene 
evolution across taxa). For example, intragenomic variation per-
sists within nuclear rRNA loci, even though rRNA tandem repeat 
arrays are subjected to concerted evolution within eukaryotic 
genomes (Bik et al., 2013; Kumar et al., 2017; Pawłowska et al., 
2020; Zhao et al., 2019). As a result, an individual eukaryote will 

typically be represented by a “Head–Tail” pattern in 18S rRNA me-
tabarcoding datasets, exhibiting a dominant “Head” sequence with 
high relative abundance that represents the species-specific DNA 
barcode, as well as a “Tail” of rarer low-abundance sequences that 
exhibit high pairwise similarity to the diagnostic reference barcode 
(Pereira et al., 2020; Porazinska et al., 2010, 2010). This phenome-
non has also been reported for other metabarcoding makers (e.g., 
ITS; Anslan et al., 2018), despite less prevalent in the COI gene 
(Macheriotou et al., 2019).

The clustering of raw metabarcoding reads into molecular op-
erational taxonomic units (MOTUs) is one ubiquitous approach for 
minimizing artifacts and reducing confounding biological variation 
such as intragenomic rRNA variation. MOTU is a general term for 
a DNA-based “species approximation” (Blaxter, 2016; Blaxter et al., 
2005; Creer et al., 2010) that can be used to calculate traditional 
biodiversity indices and perform ecological analyses, either using 
taxa presence/absence or using relative abundance. Two distinct 
classes of MOTUs seen in the scientific literature are associated 
with specific bioinformatics algorithms for processing raw HTS 
data: operational taxonomic units (OTUs) and amplicon sequence 
variants (ASVs), the latter also known as exact sequence variation 
(ESVs) or zero-radius OTUs (ZOTUs) (Callahan et al., 2017; Edgar, 
2017, 2018) In fact, the terminology for denoising methods such 
as ASVs has been used interchangeably (Antich et al., 2021; Terrat 
et al., 2020). OTUs emerged as an early approach for analyzing 
data from diverse HTS platforms, relying on the distance-based 
clustering of raw reads according to a set pairwise similarity cut-
off (e.g., 97% and 99% for prokaryotes and eukaryotes, respec-
tively [Bik, Porazinska et al., 2012; Deiner et al., 2017; He et al., 
2015]). A plethora of OTU clustering algorithms now exist, which 
can cluster reads in myriad ways (Jackson et al., 2016; Prodan 
et al., 2020), with endless parameter choices for the strictness (or 
inclusivity) of the OTU cluster generation steps. Two highly pop-
ular OTU clustering algorithms include UCLUST (Edgar, 2010) and 
VSearch (Rognes et al., 2016), respectively implemented in the 
QIIME1 (Caporaso et al., 2010) and QIIME2 (Bolyen et al., 2019) 
software suites for microbial ecology. Newer ASV algorithms uti-
lize Illumina error-correction approaches to perform quality checks 
and processing on raw sequence reads. Currently, the two most 
popular tools for ASV generation are DADA2 (Callahan et al., 2016) 
and Deblur (Amir et al., 2017), although other ASV algorithms are 
rapidly emerging (e.g., UNOISE2 for ZOTUs, [Edgar, 2017]). The 
most important distinction between these two classes of MOTUs 
is the increased sophistication of ASV algorithms, which include 

utilize taxonomic assignment information. Analyses of LC datasets and rare MOTUs 
are especially sensitive to the choice of algorithms and better software tools may be 
needed to address these scenarios.
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complex mathematical modelling approaches aimed at eliminating 
false positives, chimeras, and sequencing artifacts (although note 
that more simplistic chimera checking steps are also ingrained in 
many OTU clustering pipelines, [Edgar et al., 2011; Mysara et al., 
2017]). Furthermore, ASVs are thought to represent the true DNA 
sequences present in the target community and are thus reusable 
and reproducible across metabarcoding studies (in contrast to de 
novo OTUs which are emergent features of a dataset and must be 
treated as study-specific clusters [Callahan et al., 2017]). The im-
pact of different MOTU generation workflows, and the biological 
implications for the move toward ASVs, has not been extensively 
documented for eukaryotes. Worth mentioning, BIOCOM-PIPE 
(Djemiel et al., 2020) and PEMA (Zafeiropoulos et al., 2020) are 
flexible pipelines allowing the analysis of multiple gene markers 
(e.g., 16S, 18S, ITS, and COI) at once, and offering different clus-
tering methods in addition to ASVs. Similarly, Brandt et al. (2021) 
have combined denoising and clustering approaches to evaluate 
both prokaryote and eukaryote diversity in metabarcoding data-
sets. For eukaryotes specifically, Giebner et al. (2020) have recently 
compared the diversity level of COI and 18S rRNA markers as well 
as metabarcoding and sequence capture approaches. Still, the vast 
majority of benchmarking studies and algorithm comparisons have 
been performed on 16S rRNA studies of bacterial and archaeal 
communities (Caruso et al., 2019; Escudié et al., 2018; Ghodsi et al., 
2011; Jackson et al., 2016; Nearing et al., 2018; Prodan et al., 2020). 
Although these prokaryotic-focused studies have provided import-
ant insights on the performance and ecological relevance of differ-
ent computational workflows, their relevance for eukaryotic taxa is 
not always clear. Eukaryotic genome complexity and evolution may 
pose challenges for bioinformatics algorithms originally optimized 
for use with bacterial/archaeal 16S rRNA datasets. Additionally, 
many eukaryotic metabarcoding studies include complementary 
visual surveys of taxa (e.g., microscopy, trawls, kick sampling, and 
video transects), which can provide critical independent observa-
tions for validating DNA-based inferences derived from HTS data-
sets (Cahill et al., 2018; Dell’Anno et al., 2015; Djurhuus et al., 2018; 
Geisen et al., 2018; Schuelke et al., 2018).

The current eukaryotic metabarcoding literature is heavily fo-
cused on methods comparisons for field sampling (Beentjes et al., 
2019; Koziol et al., 2019; Turner et al., 2015) and wet laboratory 
protocols (e.g., DNA extraction comparisons, design of improved 
primer sets, [Alberdi et al., 2018; Bradley et al., 2016; Brannock & 
Halanych, 2015]), and comparison of intraspecific vs. interspecific 
genetic diversity for the COI gene (Elbrecht et al., 2018; Leray et al., 
2013; Macheriotou et al., 2019). Yet, method comparisons of eukary-
otic metabarcoding workflows and benchmarking of other loci (i.e., 
18S rRNA and ITS rRNA datasets) are still limited, particularly when 
assessing the performance of algorithms producing distinct classes 
of MOTUs (i.e., OTUs vs. ASVs, [Bálint et al., 2014; Macheriotou 
et al., 2019; Pauvert et al., 2019]). Thus, there is a pressing need 
for downstream comparisons of bioinformatics tools in eukaryotic 
metabarcoding studies especially those that evaluate the biological 
implications of different MOTU generation approaches and how the 

choice of software tools impacts downstream ecological analyses 
(but see above; [Brandt et al., 2021; Djemiel et al., 2020; Giebner 
et al., 2020; Zafeiropoulos et al., 2020]).

In the present study, we aimed to evaluate how distinct bio-
informatics pipelines may impact the biological inferences drawn 
from 18S rRNA metabarcoding datasets. We focused on four com-
putational workflows representing two distinct classes of MOTU 
generation (Figure 1): OTU clustering using VSearch and UCLUST, 
and ASV generation using DADA2 and Deblur. Our study compared 
results from two 18S rRNA metabarcoding datasets generated as 
part of other ongoing projects: a “high complexity” (HC) environ-
mental dataset generated from bulk community DNA in Arctic ma-
rine sediments, and a “low complexity” (LC) dataset representing 
metabarcoding profiles from individually barcoded nematodes, 
where morphological identification of each specimen was verified 
under light microscopy (Schuelke et al., 2018). Both datasets repre-
sent the same 18S rRNA gene region (V1–V2 hypervariable regions) 
and were generated using the same PCR primer set and molecu-
lar wet laboratory protocols, thus facilitating direct comparison 
of downstream bioinformatics outputs. We hypothesized that (1) 
ASVs would represent a more biologically relevant approach for 
eukaryotic metabarcoding data (i.e., a more accurate representa-
tion of the biodiversity), (2) species-specific DNA barcodes (Head 
MOTUs exhibiting high relative abundance) would be consistently 
recovered across all bioinformatics pipelines, (3) computational 
algorithms and parameters would strongly influence downstream 
estimates of alpha- and beta diversity, and (4) dataset complexity 
(i.e., the level of biodiversity contained in each metabarcoding sam-
ple) would impact the performance of bioinformatics pipelines in 
unanticipated ways.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and data generation

In this study, we used a “high complexity” (HC) environmental 
dataset generated from community DNA in Arctic marine sedi-
ments, and a “low complexity” (LC) dataset representing individu-
ally barcoded nematodes. We defined the datasets as HC and LC 
based on the expected diversity of each sample. Single-nematode 
metabarcoding samples are expected to display a lower diversity, 
which is represented by the nematode-specific DNA barcode and 
other additional sequences of associated taxa (e.g., gut content and 
parasites). On the contrary, marine sediment samples are likely to 
be represented by highly diverse benthic communities, including 
multiple phyla.

The Arctic metabarcoding dataset (HC) was generated using 
127 marine sediment samples collected from the continental 
shelf/slope in the Northeast Chukchi and Beaufort Seas (Figure 
S1, Table 1). This dataset was generated as part of a broad study 
focused on evaluating benthic meiofauna community structure 
through a combination of morphological taxonomy and omics 
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approaches. Additional details on sediment sample collection and 
sample processing are provided in Mincks et al. (2021). Briefly, 
frozen sediment samples were thawed and meiofaunal organisms 

were isolated via decantation over a 63-μm mesh sieve. Total ge-
nomic DNA was extracted from material retained on the sieve using 
MoBio PowerSoil® kits (MoBio Laboratories, Inc.). A fragment of 

F I G U R E  1  Workflow diagram of the four different bioinformatics pipelines used in this study. For the UCLUST and VSearch pipelines, 
reads were first quality controlled and merged using FLASH2 and Trimmomatic. Reads were clustered into OTUs using a 99% similarity 
threshold. Singletons and chimeric sequences were removed. For DADA2, the demultiplexed FASTQ files were used to estimate ASVs. For 
Deblur, denoising was done on merged quality-filtered reads. Unlike the DADA2 algorithm, Deblur processes each sample independently. 
Four matrices were produced for each dataset. Taxonomy was assigned using BLAST+ (BLAST majority consensus) in QIIME2 v2019.4



    |  367DE SANTIAGO et al.

the 18S rRNA gene (~400-bp, V1–V2 hypervariable regions) was 
amplified from environmental DNA extracts using the F04/R22 
eukaryotic primers (Blaxter et al., 1998). For marine meiofauna, 
including nematodes, the V1–V2 or V9 regions of 18S rRNA gene 
provide the best binding and taxonomic coverage across meiofau-
nal phyla. However, the former region is more variable, providing 
higher resolution in separating taxa (Creer et al., 2010), as well as 
better represented in molecular databases. PCR products from 
each sediment sample were tagged with a unique nucleotide bar-
code and pooled before sequencing.

The single-specimen metabarcoding dataset (LC) was generated 
from individual marine nematodes collected in the Pacific, Arctic, 
and Gulf of Mexico (Figure S1, Table 1). This dataset was originally 
generated by Schuelke et al. (2018) who evaluated microbiome pat-
terns (archaea and bacteria) associated with diverse marine nema-
tode genera. Further exploration of intragenomic rRNA patterns in 
marine nematodes was carried out by Pereira et al. (2020) in a re-
fined version of the original dataset (i.e., 227 samples). Both studies 
provide detailed methods regarding nematode sorting, taxonomic 
identification, and genus-level diversity patterns. Wet laboratory 
protocols for single-nematode metabarcoding included an extensive 
suite of blank/control samples as a checkpoint for contamination in 
these low biomass samples. After morphological vouchering of each 
nematode specimen, samples were submitted to molecular proce-
dures described in Pereira et al. (2020). Briefly, DNA was extracted 
from individual nematodes using a Proteinase K “Worm Lysis Buffer” 
protocol. PCR amplification of the 18S rRNA gene was carried out 
using the same eukaryotic primer set (F04/R22; [Blaxter et al., 
1998]) and multiplexing/pooling procedures as described for the HC 
dataset above.

All PCR products were purified using magnetic beads following 
the manufacturer's protocol (Agencourt AMPure XP beads; Beckman 
Coulter). Sample concentrations were subsequently measured using 
a Qubit® 3.0 Fluorometer and a Qubit® dsDNA HS (High Sensitivity) 
Assay Kit (Thermo Fisher Scientific). Normalization values were cal-
culated to ensure that approximately equivalent DNA concentrations 
were pooled across all samples, including controls and blank samples. 
The final pooled libraries were subjected to an additional magnetic 
bead cleanup step, followed by size selection on a BluePippin (Sage 
Science) to remove any remaining primer dimer and isolate target 
PCR amplicons within the range of 300–700 bp. A Bioanalyzer trace 
was run on each size-selected pool as a quality control measure, and 
the pooled 18S rRNA amplicon libraries were sequenced in two sep-
arate runs on the Illumina MiSeq platform (2 × 300-bp paired-end 
runs) at the UC Davis Genomics Core Facility. All wet laboratory pro-
tocols, sample mapping files, and downstream bioinformatics scripts 
used in this study have been deposited on GitHub (https://github.
com/BikLa​b/OTU-ASV-euk-bench​marking).

2.2  |  OTU and ASV pipeline designs

OTU clustering was carried out using the UCLUST and VSearch al-
gorithms, while ASVs were generated using the DADA2 and Deblur 
pipelines (Figure 1). For OTU picking workflows, raw Illumina reads 
were first demultiplexed, merged using FLASH2 (Magoč & Salzberg, 
2011), and quality filtered using Trimmomatic (Bolger et al., 2014) in 
conjunction with a custom script described in Schuelke et al. (2018). 
UCLUST (Edgar, 2010) was implemented within QIIME1 v1.9.1 
(Caporaso et al., 2010), whereby quality-filtered reads were clustered 

TA B L E  1  Description of geographic locations and number of samples included in this study

Alaskan continental shelf
High complexity (HC) Dataset

Geographic Subregion Number of samples Region Depth range (m)

Alaskan Beaufort Shelf 8 Arctic 50–500

Amundsen Gulf 30 Arctic 32–352

Banks Island 7 Arctic 51–379

Camden Bay 13 Arctic 20–350

Chukchi Sea 32 Arctic 25.4–51.1

Mackenzie River Plume 37 Arctic 17–1200

Nematode microbiomes
Low complexity (LC) dataset

Nematode familya Number of samplesb Region Depth range (m)

Chromadoridae 31 Arctic, Gulf of Mexico, Southern California 0–1000

Comesomatidae 46 Arctic, Gulf of Mexico 20−1000

Desmoscolecidae 29 Arctic, Gulf of Mexico 200–1000

Oxystominidae 27 Arctic, Gulf of Mexico 20–1000

Other 94 Arctic, Gulf of Mexico, Southern California 0–2239

aThe category “Other” includes less common nematode families (a total of 20).
bFor the Low Complexity (LC) dataset, number of samples corresponds to the number of nematode specimens belonging to each respective family.

https://github.com/BikLab/OTU-ASV-euk-benchmarking
https://github.com/BikLab/OTU-ASV-euk-benchmarking
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at 99% using the subsampled open-reference protocol (pick_open_
reference_otus.py), with 10% subsampling of failed reads, and dis-
carding of singletons from the final OTU table (Rideout et al., 2014). 
For metazoans, and nematodes in particular, clustering at 99% has 
been widely accepted as a proxy for species delimitation (Fonseca 
et al., 2017; Macheriotou et al., 2019). Chimeric sequences were 
identified and removed from the OTU table using USEARCH61, and 
the resulting OTUs were aligned to the QIIME-formatted SILVA132 
database using the Pynast aligner and UCLUST (pairwise align-
ment method). Highly variable regions were removed using filter_
alignment.py. Next, aligned representative sequences were used to 
construct a phylogeny using Fasttree (Price et al., 2009) and rooted 
using the midpoint method (make_phylogeny.py). VSearch (Rognes 
et al., 2016) was implemented using QIIME2 v2019.4 (Bolyen et al., 
2018), whereby quality-filtered reads were clustered at 99% using 
cluster-features-open-reference. Singletons were filtered out from 
the OTU table and chimeric sequences identified using the de novo 
option; both chimeric and borderline chimeric sequences were re-
moved from the OTU table. The resulting representative sequences 
were aligned using MAFFT (Katoh et al., 2002), ambiguous regions 
were masked, and the resulting aligned sequences were used to 
infer a phylogenetic tree using Fasttree (align-to-tree-mafft-fasttree, 
with rooting using the midpoint method). Discrepancies between 
UCLUST and VSearch workflows were a result of algorithm changes 
between the QIIME1 and QIIME2 pipelines (e.g., MAFFT replacing 
the depreciated Pynast aligner in QIIME1, and UCLUST being re-
placed with VSearch in QIIME2). The UCLUST and VSearch work-
flows thus aimed to carry out the same approximate bioinformatics 
steps in QIIME1 vs. QIIME2, respectively. It was, therefore, crucial 
to assess whether these pipeline changes in QIIME2 would result in 
noticeable discrepancies in downstream results and biological and 
ecological interpretations.

For ASV workflows, DADA2 (Callahan et al., 2016) and Deblur 
(Amir et al., 2017) were both executed within QIIME2 v2019.4. 
DADA2 was implemented directly on the demultiplexed FASTQ 
files since this algorithm incorporates quality-filtering of raw 
Illumina reads. The DADA2 error-correcting algorithm was run 
using default parameters, except for the truncating and trimming 
parameters. Forward and reverse reads were truncated at 220 bp 
and 236 bp for the HC dataset and at 232 bp and 253 bp for the 
LC dataset (median PHRED score ≥30). Unlike DADA2, Deblur does 
not differentiate between forward and reverse reads. Therefore, 
reads were initially merged using the Vsearch join-pairs command 
and quality-filtered according to the q-score-joined protocol. Deblur 
was implemented on the merged quality-controlled reads using de-
fault parameters. Reads were trimmed at 360 bp and 350 bp for the 
HC and LC dataset, respectively, thus allowing us to maximize the 
initial number of reads for the Deblur pipeline. Deblur internally re-
moves chimeric and error-prone reads on a sample-by-sample basis. 
A tree was generated for the DADA2 and Deblur datasets using the 
align-to-tree-mafft-fasttree workflow in QIIME2 as described above 
(see VSearch method).

2.3  |  Bioinformatics analysis

All downstream analyses were conducted in RStudio (Team, 2017) 
using the phyloseq (McMurdie & Holmes, 2013), vegan (Oksanen, 
2011), ggplot2 (Wickham, 2009), and ggpubr (Kassambara, 2018) 
packages. First, we recorded the overall number of reads and OTUs/
ASVs retained by each pipeline (Tables S1and S2), including compari-
sons between individual samples and datasets (HC and LC). To as-
sess whether the number of MOTUs was correlated with the number 
of reads retained by each pipeline, we estimated correlations (R2 and 
p-value) using Pearson's correlation coefficient (Figure 2).

Second, we aimed to evaluate whether each pipeline resulted 
in similar alpha- and beta-diversity metrics across Arctic subre-
gions (HC dataset), these representing well-defined geographic 
areas/habitats and known to be under the influence of specific 
oceanographic conditions (e.g., Mackenzie River plume). For nem-
atode metabarcoding samples (LC dataset), we grouped specimens 
representing the four major (most common) nematode families 
viz. Chromadoridae, Comesomatidae, Desmoscolecidae, and 
Oxystominidae, thus providing enough “replicates” for further sta-
tistical analyses focusing on ecological patterns. Importantly, nem-
atode species belonging to the same family often belong to the 
same trophic group (Table 1).

Alpha diversity was calculated in phyloseq using three different 
indices (observed MOTUs, Simpson, and Shannon) and visualized 
using ggplot2 and ggpubr (Figures S2,S3, and S4). Kruskal–Wallis 
(KW) analysis was used to test for significant differences in alpha 
diversity among Arctic subregions and nematode groups. Pairwise 
comparisons were performed using the Wilcox test when signifi-
cant differences among groups were detected. Principal coordinate 
analysis (PCoA) was carried out to assess beta diversity using three 
different metrics: Bray–Curtis similarity, weighted Unifrac, and un-
weighted Unifrac (Lozupone & Knight, 2005). The HC dataset was 
rarefied at 1000 sequences per sample, resulting in five samples 
that were excluded from the UCLUST, DADA2, and Deblur pipe-
lines (Table S1). The LC dataset was also rarefied at 1000 sequences 
per sample, resulting in 22 samples that were excluded from the 
Deblur pipeline (Table S2). Finally, a Procrustes analysis was used 
to determine concordance among the MOTU pipelines and beta-
diversity metrics. Procrustes were visualized using a combination 
of vegan and ggplot2 packages. The Procrustes results were further 
assessed using PROTEST with 9999 permutations (Jackson, 1995). 
Procrustes and PROTEST were implemented on rarefied datasets 
(Table 2). For each pairwise comparison using Procrustes/PROTEST, 
samples not present in both pipelines were excluded from the anal-
ysis (i.e., samples that did not meet the minimum rarefaction thresh-
old). The impact of bioinformatics parameters and distance indices 
was assessed using the returned R and M12 values from each pair-
wise comparison. Outputs are highly concordant if two algorithms 
displayed a high R value alongside a low M12 value, whereas the op-
posite (i.e., low R value alongside a high M12 value) characterizes 
them as being more discordant.
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Taxonomy was assigned for each MOTU table using QIIME2 
v2019.4. For UCLUST, FASTA files containing OTU representa-
tive sequences were reformatted for compatibility with QIIME2 

v2019.4. For all four pipelines, taxonomy was assigned using 
BLAST  +  with a minimum of 90% sequence identity, which is 
generally the cutoff used for “Phylum” level assignments (Bik, 

F I G U R E  2  Number of MOTUs and reads retained by UCLUST, VSearch, DADA2, and Deblur. Median number of MOTUs (a, d) and reads 
(b, e) for HC and LC datasets, respectively. KW analysis was used to test for significant differences among bioinformatics pipelines for HC 
and LC datasets. Relationship between the number of MOTUs and number of reads (c, f) across the four bioinformatics pipelines for HC and 
LC datasets, respectively

TA B L E  2  Results from the PROTEST/Procrustes analysis

Methods

HC dataset LC dataset

Unweighted-
unifrac

Weighted-
unifrac Bray–Curtis

Unweighted-
unifrac

Weighted-
unifrac Bray–Curtis

R M12 R M12 R M12 R M12 R M12 R M12

UCLUST—VSearch 0.94 0.12 0.90 0.19 0.96 0.08 0.88 0.22 0.70 0.51 0.97 0.05

UCLUST—DADA2 0.90 0.19 0.92 0.15 0.97 0.06 0.77 0.41 0.74 0.45 0.98 0.04

UCLUST—Deblur 0.88 0.22 0.93 0.13 0.96 0.08 0.66 0.57 0.73 0.48 0.98 0.04

VSearch—DADA2 0.90 0.19 0.92 0.16 0.95 0.11 0.79 0.38 0.92 0.15 0.95 0.08

VSearch—Deblur 0.88 0.22 0.93 0.13 0.93 0.13 0.69 0.52 0.85 0.29 0.95 0.09

DADA2—Deblur 0.89 0.20 0.95 0.10 0.98 0.03 0.81 0.35 0.93 0.13 0.99 0.01

For each dataset (i.e., distance index), the highest values of concordance (R: correlation coefficient and M12: goodness-of-fit statistic) are highlighted 
in bold. Beta diversity was estimated by rarefying data matrices at 1000 reads per sample. For all comparisons, p-value was always significant 
(p < 0.01).
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Sung et al., 2012; Creer et al., 2010). Our reference database of 
full-length 18S rRNA sequences was the QIIME-formatted SILVA 
132 database with additional curated 18S rRNA sequences, 
as described in Pereira et al. (2020). The impact of the MOTU 

pipelines on taxonomic assignment was further explored by gen-
erating barplots with ggplot2 of taxonomic groups with abun-
dances >0.5% (collapsed at phylum level for both HC and LC 
datasets; Figure 3).

F I G U R E  3  Barplots showing the most 
abundant taxa (i.e., relative abundance 
>0.5) across the different bioinformatics 
pipelines for (a) HC and (b) LC datasets. 
Lower abundant taxa were grouped in 
the category “Other.” Taxonomic rank 
(phylum level) is the same for both HC and 
LC datasets. Note that the most abundant 
taxa do not necessarily match across 
pipelines
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3  |  RESULTS

3.1  |  Comparison of MOTUs recovered across 
bioinformatics pipelines

The total number of processed reads and MOTUs, including sum-
mary statistics (i.e., mean, median, standard deviation, and mini-
mum/maximum values) obtained across the four pipelines for the 
HC and LC datasets are presented in Tables S1 and S2, respectively. 
For processed Illumina reads, significant differences were detected 
among pipelines (Global KW, <0.01, LC X2 = 111.12; HC X2 = 110.29; 
Figure 2), except when comparing UCLUST vs. VSEARCH (not signif-
icant in either the HC or LC dataset; Figure 2b,e). Furthermore, while 
three pipelines resulted in a similar number of final processed reads 
(UCLUST, VSearch, and DADA2), the Deblur algorithm returned far 
fewer reads and recovered only about 43–57% of the processed 
reads seen in the other pipelines (Tables S1 and S2).

The median number of MOTUs produced by OTU pipelines 
(UCLUST and VSearch) was at least 15-fold higher than the number of 
ASVs resulting from either DADA2 or Deblur (KW <0.01; Figure 2a,d). 
For both datasets, there were no significant differences in the median 
number of MOTUs produced by UCLUST and VSearch. However, we 
observed subtle differences in OTU membership, which includes 
the overall number of OTUs and OTU frequency/abundance. In this 
sense, VSearch consistently returned a higher proportion of “rare” 
OTUs (i.e., containing ≤10 reads per OTU; Table 3). This higher level 
of rare OTUs was much more pronounced for the LC dataset, with 
VSearch returning 39,967 more rare OTUs than UCLUST (a 266% in-
crease; Table 3). For the HC dataset, VSearch exhibited 27,538 more 
rare OTUs than UCLUST (a 137% increase; Table 3). The MOTU pat-
terns for ASV algorithms showed stark differences across the HC and 
LC datasets. For the Deblur pipeline, the median number of ASVs 
observed in the LC dataset was significantly lower than DADA2 (p-
value ≤0.001, Figure 2d). In contrast, Deblur returned a higher me-
dian number of ASVs in the HC dataset, but not significantly different 
from DADA2 (Figure 2a). Although the number of Deblur ASVs ap-
peared to be impacted by data complexity, the Deblur pipeline always 
returned lower total numbers of processed reads and MOTUs in each 
overall dataset compared with DADA2 (Table 3).

When looking at subsets (i.e., Arctic subregions and nematode 
families for the HC and LC datasets, respectively; Figure S2 and 
S3), these patterns of recovered reads and MOTUs were highly 

consistent across bioinformatics pipelines, particularly for the HC 
dataset. For example, no significant differences (p  >  0.05) were 
detected among Arctic subregions for both MOTUs and retained 
reads (Figure S2). For the LC dataset, we also observed an overall 
agreement across algorithms for the number of reads, except for 
Deblur which differed from the others (e.g., family Oxystominidae; 
Figure S3). However, for MOTUs, we observed changes (i.e., from 
non-significant to significant) within and between algorithm classes 
in the LC dataset (Figure S3).

We also detected a significant positive correlation between 
the number of MOTUs and retained reads in both the OTU and 
ASV algorithms, except for Deblur in the LC dataset (R2 = 0.01, p-
value = 0.31). Although all four pipelines showed this relationship 
(Figure 2c,f), correlations were more moderate for methods estimat-
ing ASVs. This correlation between MOTUs and retained reads may 
be impacted by community complexity, sequencing depth, or both.

3.2  |  MOTU rank abundance and 
taxonomy profiles

Given the significant differences in total number of reads and 
MOTUs recovered across algorithm classes (Tables S1 and S2), we 
next sought to investigate the source of this discrepancy and as-
sess the potential implications for biological interpretations of en-
vironmental metabarcoding datasets. Rank-abundance curves were 
generated for MOTUs recovered across all four pipelines in the HC 
and LC datasets (Figure 4a,b). In both datasets, the OTU algorithms 
(UCLUST and Vsearch) exhibited a typical L-shaped rank-abundance 
curve with a steep gradient, indicating that top ranked OTUs had 
much higher abundances than the “long tail” of rare OTUs. OTU 
datasets were almost entirely dominated by rare MOTUs, represent-
ing anywhere from 75.8% to 96.5% of the entire dataset (Table 3). 
In contrast, the ASV algorithms showed S-shaped (DADA2) and 
C-shaped (Deblur) rank-abundance curves with much more gentle 
slopes. Overall, these patterns seem not to be impacted by dataset 
complexity.

Both DADA2 and Deblur strongly reduced the collection of rare 
MOTUs (e.g., the “long tail”) commonly found in metabarcoding 
datasets (Figure 4, Table 3). The Deblur pipeline returned the low-
est proportion of rare MOTUs across both datasets (i.e., only 4.4% 
and 6.8% of the HC and LC datasets, respectively), while DADA2 

TA B L E  3  Total number of processed reads, MOTUs, and rare MOTUs (≤10 reads) for each dataset and pipeline

Dataset Metric UCLUST VSearch DADA2 Deblur

HC arctic sediments Total read number 11,902,088 12,196,959 9,986,980 5,229,272

Total MOTUs 97,600 114,957 5,409 2,977

% of MOTUs≤ 10 reads(number) 75.8%(73,979) 88.3%(101,517) 24.0%(1,296) 4.4%(131)

LC single nematodes Total read number 9,926,235 10,108,666 8,060,929 4,590,872

Total MOTUs 27,920 66,381 1,972 555

% MOTUs≤ 10 reads(number) 86.4%(24,113) 96.5%(64,080) 12.4%(244) 6.8%(38)

Bold text indicates the percentage and number of rare MOTUs in the HC and LC datasets.
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exhibited slightly higher proportions of rare MOTUs (24% and 12.4% 
of OTUs in the HC and LC datasets, respectively). This difference be-
tween ASV algorithms is also apparent in the MOTU rank-abundance 
curves (Deblur having a shorter tail of rare MOTUs; Figure 4). We also 
noted that dataset complexity appears to impact the percentage of 
rare MOTUs recovered in ASV pipelines: the HC dataset contained 
a higher proportion of rare MOTUs in DADA2 (as expected given 
the presumed higher sample biodiversity), while Deblur returned a 
higher proportion of rare MOTUs in the LC dataset, suggesting that 
dataset complexity may be a confounding factor for the Deblur al-
gorithm performance. Overall, there appeared to be a higher even-
ness among MOTUs produced from ASV algorithms (DADA2 and 
Deblur), which is reflected by the slope of the curves (i.e., gentle 
slopes indicating less dominance of fewer top ranked ASVs) and the 
fewer low-ranked ASVs (Figure 4). Moreover, deeper exploration of 
the LC dataset (i.e., four major nematode families) confirmed that 
the behavior between methods within the same MOTU class is more 
similar than when comparing across classes and that OTU clustering 
algorithms tend to produce longer low-abundance tails (Figure S5).

Although the shape of rank-abundance curves varied across 
methods in the HC and LC datasets, the abundance of the dominant 
MOTU (i.e., the first rank MOTU) was consistent across all pipelines, 
and about an order of magnitude higher than the second most abun-
dant MOTU (Figure 4). In the LC dataset where we could evaluate 
the MOTU profile of individual nematodes, the nucleotide sequence 
of the most abundant (Head) MOTU remained identical across all 
four algorithms (Table 4). Moreover, we observed that Head MOTUs 
in ASV pipelines showed a 10–20% reduction in relative abundance, 
presumably because ASVs are a less inclusive “cloud” of sequence 
reads. When examining Head MOTUs in the HC dataset, however, 
congruence was only detected between algorithms of the same 
MOTU class, which also led to some different taxonomic assign-
ments (Table 4). The primary difference across pipelines remained 
the curve shape and length of the “long tail” of rare MOTUs, with 
algorithm class having the strongest influence (OTU vs. ASV pipe-
lines). Similar patterns were also apparent in subgroups of the LC 
dataset, where OTU algorithms appeared to produce a longer and 
more prominent tail of rare MOTUs (e.g., Chromadoridae, Figure 

F I G U R E  4  Ranked MOTU distribution showing “Head–Tail” patterns across pipelines. Rank-abundance curves for the HC (a) and LC 
(b) datasets. In the x-axis, the number of ranked MOTUs is multiplied by a factor of 100. Alpha-diversity indices including Shannon (H’), 
Simpson (D), and Pielou's evenness (J’) are also given for each method/dataset. For rare MOTUs (i.e., containing ≤10 reads), KW analysis 
was used to test for significant differences among bioinformatics pipelines for HC (c) and LC (d) datasets
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S5). Interesting, for the highest-ranked MOTUs (i.e., the top 10 most 
abundant), the different algorithms behaved fairly similar, except for 
Deblur (family Oxystominidae; Figure S5). Despite these observed 
changes in MOTU rank-abundance curves, the relative abundance of 
major taxonomic groups (phylum level) remained fairly stable across 
all four bioinformatics pipelines in both the LC and HC datasets (i.e., 
percentage values in Figure 3). Small differences were only observed 
for the Deblur method where some of the low abundant taxa were 
not recovered (e.g., Cercozoa and Ascomycota in the HC and LC 
datasets, respectively). Furthermore, we observed that for the LC 
dataset, which is largely dominated by Nematoda, visualizing the 
data at higher taxonomic resolution (e.g., family level) led to greater 

differences across methods (e.g., a 4% increase in Comesomatidae 
and a 7% reduction in Oxystominidae in the Deblur method) and the 
absence of some low abundant taxa, which varied according to pipe-
line (e.g., Linhomoeidae in DADA2 outputs; Microlaimidae in Deblur 
outputs; data not shown).

3.3  |  Alpha-diversity metrics across pipelines

Alpha-diversity metrics were calculated for both HC and LC data-
sets, using MOTU tables resulting from all four bioinformatics pipe-
lines. To assess fine-scale differences, each metabarcoding study 

TA B L E  4  Ten most abundant MOTUs for each bioinformatics pipeline in the HC and LC datasets. UCLUST taxonomy and relative 
abundance (RA %) are used as a reference for comparison with the other three methods

Method MOTU
RA
(%) HC Dataset – Taxonomy

Vsearch
(RA %)

Dada2
(RA %)

Deblur
(RA %)

UCLUST MOTU1 6.0 Annelida; Polychaeta; Scolecida; Spionida OTU1 (11.69) ASV2 (5.37) ASV2 (5.91)

MOTU2 6.0 Annelida; Polychaeta; Palpata; Phyllodocida OTU2 (7.20) ASV1 (6.64) ASV1 (7.96)

MOTU3 3.8 Ochrophyta; Diatomea; Bacillariophytina; 
Mediophyceae; Chaetoceros

OTU3 (4.5) ASV4 (4.83) ASV3 (5.77)

MOTU4 3.0 Annelida; Polychaeta; Scolecida; Spionida — ASV3 (5.0) ASV4 (5.26)

MOTU5 2.9 Nematoda; Chromadorea; Araeolaimida; 
Comesomatidae; Sabatieria; Sabatieria sp.

OTU4 (3.25) ASV6 (2.95) ASV6 (3.15)

MOTU6 2.7 Dinoflagellata; Dinophyceae; Peridiniphycidae; 
Gonyaulacales; Alexandrium

OTU6 (2.78) ASV5 (3.17) ASV5 (3.31)

MOTU7 2.5 Annelida; Polychaeta; Scolecida; Spionida — — —

MOTU8 2.3 Annelida; Polychaeta; Scolecida; Spionida OTU7 (2.67) ASV7 (2.66) ASV7 (2.90)

MOTU9 1.9 Annelida; Polychaeta; Scolecida; Spionida OTU9 (2.05) ASV8 (2.16) ASV8 (2.79)

MOTU10 1.8 Annelida; Polychaeta; Scolecida; Spionida OTU5 (3.04) ASV9 (2.15) ASV9 (2.33)

Method MOTU
RA
(%) Taxonomy – LC Dataset

Vsearch
(RA %)

Dada2
(RA %)

Deblur
(RA %)

UCLUST MOTU1 7.13 Nematoda; Chromadorea; Chromadorida; 
Chromadoridae

OTU1 (8.83) ASV1 (8.01) ASV1 (12.12)

MOTU2 5.69 Nematoda; Chromadorea; Araeolaimida; 
Comesomatidae; Sabatieria; Sabatieria sp.

OTU2 (6.55) ASV2 (5.09) ASV2 (8.46)

MOTU3 2.71 Nematoda; Chromadorea; Desmodorida OTU4 (3.15) ASV3 (2.6) ASV3 (3.09)

MOTU4 2.59 Nematoda; Chromadorea; Araeolaimida; 
Comesomatidae; Sabatieria; Sabatieria sp.

OTU3 (4.08) ASV4 (1.84) ASV4 (2.6)

MOTU5 1.76 Nematoda; Chromadorea; Araeolaimida; 
Comesomatidae

OTU9 (1.78) ASV5 (1.61) ASV5 (2.45)

MOTU6 1.67 Nematoda; Enoplea; Enoplida; Oxystominidae OTU6 (2.16) ASV9 (1.52) —

MOTU7 1.62 Nematoda; Chromadorea; Araeolaimida; 
Comesomatidae

OTU8 (1.84) ASV6 (1.56) ASV6 (2.41)

MOTU8 1.6 Nematoda; Chromadorea; Desmoscolecida; 
Desmoscolecidae; Desmoscolex

— ASV10 (1.34) ASV8 (2.12)

MOTU9 1.59 Nematoda; Enoplea; Enoplida; 
Thoracostomopsidae

OTU5 (2.41) — ASV10 (1.77)

MOTU10 1.48 Nematoda; Chromadorea; Araeolaimida; 
Comesomatidae; Sabatieria; Sabatieria sp.

OTU7 (1.86) — —

MOTUs that agreed in the taxonomic assignment across pipelines but differed in one nucleotide are highlighted in bold.
(—) It indicates that no UCLUST correspondent MOTU was detected for that specific pipeline.
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was analyzed according to biologically relevant sample groupings 
including six Arctic geographic subregions (HC dataset), and four 
well-sampled nematode families (LC dataset). As observed in the full 
datasets (Figure 2), the number of OTUs recovered for each HC and 
LC data subset remained about 15-fold higher than the number of 
ASVs (Figures S2 and S3) across all subgroups, indicating that OTU 
pipelines consistently inflate MOTU diversity at all levels of a meta-
barcoding dataset. With respect to Shannon and Simpson diversity 
(Figure S4), there were typically no significant differences among 
subgroups (i.e., Arctic subregion or nematode family), except for the 
DADA2 pipeline in the LC dataset. Thus, the same subgroups were 
consistently recovered as having the lowest and highest median val-
ues of alpha diversity regardless of the MOTU pipeline (e.g., for the 
HC dataset Shannon Diversity metric, Beaufort Shelf and Camden 
Bay exhibited the lowest median value, while Bank Islands exhibited 
the highest median value Figure S4).

Conversely, bioinformatics pipelines did influence the absolute 
alpha diversity of each specific subgroup (Figures 5 and 6). For ex-
ample, ASV pipelines resulted in significant reductions in Shannon 
diversity for the HC Arctic sediments (Figure 5), as opposed to 
Simpson diversity which was overall more stable across pipelines 
(although we did observe significant differences across methods 
for Arctic regions with >30 samples, Amundsen Gulf, Chukchi Sea, 
and Mackenzie River Plume; Figure 6). For the LC dataset, Shannon 
and Simpson indices were more consistent, although bioinformat-
ics pipelines appeared to have disproportionately higher effects on 
the calculated diversity of each nematode family. Almost all pipe-
line comparisons resulted in significant differences in alpha diver-
sity for each LC dataset subgroup (Figures 5 and 6). Surprisingly, 
the difference between UCLUST and DADA2 was rarely significant, 
with these two algorithms returning similar levels of Shannon and 
Simpson diversity despite representing different MOTU algorithm 
classes. Both dataset complexity and the number of samples repre-
senting a specific subgroup appeared to be responsible for the sig-
nificant differences observed in these diversity indices.

3.4  |  Beta-diversity metrics across pipelines

Beta-diversity metrics were also calculated for both HC and LC 
datasets using results from all four pipelines and based on the Bray–
Curtis, unweighted Unifrac, and weighted Unifrac indices (rarefied 
at 1000 sequences per sample). The Procrustes analysis always re-
vealed significant concordance (p < 0.01) between pipelines regard-
less of the dataset or distance index (Table 2, Figure 7). Our results 
suggest that beta-diversity metrics, as well as dataset complexity, 
can both impact the level of concordance observed in beta-diversity 
analyses across bioinformatics pipelines. For both the HC and LC 
datasets, Bray–Curtis similarity exhibited high concordance across 

all pairwise comparisons of bioinformatics pipelines, especially be-
tween DADA2 and Deblur. Apparently, neither algorithm class (OTU 
vs. ASV generation) nor dataset complexity (HC vs. LC dataset) im-
pacted the beta-diversity patterns recovered with the Bray–Curtis 
metric as observed by the relatively similar statistical values and 
the length of vectors connecting data points (Table 2, Figure 7). In 
contrast, dataset complexity had a clear influence on the level of 
concordance observed for both weighted and unweighted Unifrac 
metrics. In the LC dataset, most pairwise Unifrac comparisons ex-
hibited low concordance (e.g., R < 0.8 and M12 > 0.2; Table 2), ex-
cept for UCLUST-Vsearch (unweighted Unifrac), VSearch-DADA2, 
and DADA2-Deblur (both weighted Unifrac), which exhibited high 
concordance. In contrast, all pairwise comparisons across both 
weighted/unweighted Unifrac metrics were recovered as highly con-
cordant in the HC dataset.

4  |  DISCUSSION

This study illustrates the differential influence of four bioinformatics 
pipelines on eukaryotic 18S rRNA metabarcoding studies. We fo-
cused on UCLUST, VSearch, DADA2, and Deblur since these work-
flows represent the most commonly applied approaches in the 18S 
rRNA metabarcoding literature. We did not attempt an exhaustive 
assessment of all software tools that exist for the delimitation of 
MOTUs (Boyer et al., 2016; Edgar, 2016; Eren et al., 2015; Mahé 
et al., 2014; Schloss et al., 2009). However, most MOTU algorithms 
process metabarcoding reads in ways that are conceptually similar to 
our four chosen workflows, and thus, our results should be broadly 
generalizable across studies.

Algorithm class (OTU vs. ASV delimitation) appeared to be the 
strongest driver of the observed differences in both the HC and 
LC datasets, having a clear impact on both the number of quality-
processed reads and MOTUs (Figure 2), the shape of MOTU 
rank-abundance curves (Figure 4a,b), and the proportion of “rare 
biosphere” taxa represented by low-abundance MOTUs (Figure 4c,d, 
Table 3). Such differences are explained by the behavior of each al-
gorithm with ASV algorithm class tending to be more stringent (e.g., 
due to modelling of sequence errors) and less prone to produce false 
positives when compared to OTU algorithm class (Amir et al., 2017; 
Caruso et al., 2019). According to Antich et al. (2021), however, clus-
tering (OTUs) and denoising (ASVs) accomplish different functions, 
the former seeking to recover meaningful “species-level entities” 
and the latter seeking to recover “correct sequences,” and therefore 
such differences should be expected.

Dataset complexity also impacted bioinformatics outputs in 
subtle and unexpected ways. For example, LC datasets appeared 
to introduce an element of randomness and stochasticity into the 
downstream ecological analysis (e.g., beta-diversity metrics; Table 2, 

F I G U R E  5  Shannon diversity index for (a) HC and (b) LC datasets. KW analysis was used to test for significant differences among 
bioinformatics pipelines for each subregion (HC dataset) or nematode family (LC dataset), separately. Number of samples (specimens for the 
LC dataset) representing each subgroup is given in Table 1
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Figure 7), and the specific influence of algorithm parameters became 
more extreme for metabarcoding samples with simpler community 
structure (e.g., patterns of recovered reads and MOTUs for the LC 
dataset; Table 3). In fact, Siegwald et al. (2017) pointed out that the 
analysis of low complexity datasets is often a difficult task, perhaps 
because it contains a higher number of low-abundance taxa (i.e., rare 
MOTUs).

In our LC dataset (where per-sample biodiversity consisted of 
one nematode and a small number of host-associated taxa and gut 
contents; [Pereira et al., 2020]), the VSearch algorithm returned 2.4x 
as many OTUs compared with UCLUST despite these two pipelines 
being in the same MOTU class (Table 3). Furthermore, we observed 
that the “long tail” of rare MOTUs was even more pronounced in 
the VSearch pipeline, especially for the LC dataset (i.e., 96.5% of all 
OTUs). These trends appear to be related to the underlying func-
tions of the two OTU algorithms. While UCLUST utilizes a heuristic 
method to find read alignments with the best score (via implemen-
tation of USEARCH; [Edgar, 2010]), the VSearch algorithm instead 
generates the full alignment vectors during MOTU generation (via 
global pairwise alignments using the Needleman–Wunsch algorithm; 
[Rognes et al., 2016]). Therefore, it is possible that VSearch produces 
tighter clusters (i.e., with smaller sequence divergence) leading to a 
higher number of OTUs and including more rare MOTUs. Previous 
benchmark studies have demonstrated that UCLUST is likely to 
produce looser clusters, especially at lower similarity thresholds 
(Ghodsi et al., 2011). Despite the higher proportion of rare MOTUs 
in VSearch outputs, previous studies have indicated that VSearch 
exhibits equal or higher accuracy and returns more stable OTU clus-
ters (that are unlikely to disappear when the data is subsetted or 
increased) compared with the UCLUST algorithm when performing 
de novo clustering (Jackson et al., 2016; Westcott & Schloss, 2015). 
The “long tail” of rare MOTUs appears to be an inherent feature of 
out-picking pipelines where sequences are clustered via pairwise 
sequence identity. However, our results suggest that the relative 
proportion of rare MOTUs (and the dominance of this “long tail” in 
any given metabarcoding dataset) will vary according to algorithm 
choice and the underlying dataset complexity, thus supporting pre-
vious findings (Siegwald et al., 2017, 2019).

In ASV approaches, the Deblur algorithm also appeared to 
be especially sensitive to dataset complexity. In our LC dataset, 
the contribution of rare MOTUs was higher than expected in the 
Deblur pipeline (6.8% of ASVs, which was ~1.5× more than in the 
HC dataset; Table 3). Similarly, read error correction was markedly 
more conservative in our LC dataset, where Deblur showed a sig-
nificant reduction in the number of ASVs recovered compared with 
DADA2 (~15% reduction; Figure 2d). In contrast, the difference be-
tween the two ASV pipelines was not significant in the HC dataset, 
with Deblur returning a higher number of MOTUs than DADA2; 
Figure 2a). However, Deblur always returned a lower total number 

of reads and MOTUs for the overall HC and LC datasets compared 
with DADA2 (Tables S1 and S2). For mock communities, Prodan et al. 
(2020) reported that Deblur conserved only about 50% of the ini-
tial read number input, whereas other pipelines were above 70%. 
Accordingly, the authors related Deblur's low conversion rate to 
the count-subtraction nature of the algorithm before the ASV es-
timation. This discrepancy between the total vs. mean number of 
recovered reads/MOTUs appears to stem from the fundamentally 
distinct ways in which DADA2 and Deblur perform quality checks 
and error correction on raw Illumina data (Amir et al., 2017; Callahan 
et al., 2016).

DADA2 merges raw Illumina reads after its ASV-generation al-
gorithm (i.e., after trimming, truncating, and denoising), while Deblur 
merges reads as a first step before subsequent quality checks are 
performed. Most importantly, Deblur performs all error correction 
and ASV-generation steps on a sample-by-sample basis. The per-
sample focus was a conscious choice by the Deblur developers, 
who designed this ASV algorithm to maximize computational speed 
and maintain the ability to be highly parallelizable when required 
for large datasets. However, this software design can erroneously 
remove sequences considered as “rare MOTUs” by only viewing 
slices of a large HTS dataset. DADA2 instead generates an error-
correction model by considering all samples and sequences at once 
(e.g., with the underlying assumption that each Illumina run has a 
unique profile of sequencing artifacts that can be eliminated by com-
paring abundant vs. rare reads). As a result, DADA2 is much more 
computationally intensive and requires more computational time. 
Our results suggest that the inherent features of the Deblur algo-
rithm produce less consistent outputs that can be heavily influenced 
by the biological community complexity built into a metabarcoding 
study, and potentially impacting the ability of statistical tests to de-
tect significant differences between groups (e.g., subregions and 
nematode families in our study). Existing ASV algorithms show wide 
divergence in algorithm design and function and therefore must be 
chosen with care.

We observed a surprising level of stability for some biological 
patterns recovered in downstream ecological analyses. For exam-
ple, the relative abundance of major taxonomic groups is generally 
preserved across bioinformatics pipelines regardless of dataset 
complexity (Figure 3). Although MOTU clustering algorithm did 
lead to some significant differences in alpha-diversity comparisons 
(Figures 5 and 6), these did not appear to impact biological inter-
pretations within a specific dataset and method; that is, the most 
diverse subgroup (Arctic subregion or nematode family) was rarely 
affected in Simpson and Shannon diversity metrics (Figure S4). A 
previous study by Jackson et al. (2016) confirmed that the abso-
lute values of alpha-diversity indices cannot be compared across 
bioinformatics methods, and such differences in diversity estimates 
can be effectively eliminated by collapsing MOTUs according to 

F I G U R E  6  Simpson diversity index for (a) HC and (b) LC datasets. KW analysis was used to test for significant differences among 
bioinformatics pipelines for each subregion (HC dataset) or nematode family (LC dataset), separately. Number of samples (specimens for the 
LC dataset) representing each subgroup is given in Table 1
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F I G U R E  7  Procrustes analysis for beta diversity. A Procrustes ordination plot based on PCoA coordinates was built for each beta-
diversity index (e.g., Bray–Curtis, unweighted Unifrac, and weighted Unifrac). The color underneath each method refers to their color on the 
plot. Longer lines connecting samples indicate higher discordance in beta-diversity patterns, whereas short lines (or no visible lines) denote 
the highest concordance
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their taxonomy assignments. However, we note that MOTU taxon-
omy assignments will also be impacted by different bioinformatics 
methods (e.g., using BLAST searches vs. Bayesian classifier tools) 
and the completeness of reference databases (Holovachov et al., 
2017; Macheriotou et al., 2019), and both of these factors typically 
vary depending on the chosen metabarcoding workflow and target 
taxon. When assessing the beta diversity among subgroups based 
on the Bray–Curtis coefficient, we also found high concordance 
across all methods in the HC and LC datasets (Figure 7), presum-
ably because the Bray–Curtis coefficient as a resemblance measure 
has valid underlying conditions (e.g., independence of joint ab-
sence) and tends to capture the important assemblage relationships 
(Clarke et al., 2006). Taken together, our results indicate that many 
overarching biological patterns within 18S rRNA metabarcoding 
datasets remain consistent across distinct bioinformatics pipelines, 
regardless of dataset complexity. Therefore, beta-diversity patterns 
appear to be largely unaffected by the overall number of MOTUs 
(Table 3) or the number of rare MOTUs as depicted in the head–tail 
curves (Figure 4).

Downstream analyses that took rare MOTUs into account were 
notably less consistent across the four pipelines, especially for the 
LC dataset. Procrustes analysis of beta-diversity patterns revealed 
low concordance across bioinformatics pipelines for the LC dataset 
when the Unifrac distance was applied (Table 2). Since Unifrac relies 
on the topology of a phylogenetic tree to calculate the evolutionary 
distance of MOTUs between samples (Lozupone & Knight, 2005), 
a low number of MOTUs with skewed relative abundance profiles 
may heavily impact beta-diversity analyses across bioinformatics 
pipelines (e.g., a few dominant MOTUs containing the vast majority 
of reads). We believe that LC datasets may be especially sensitive 
to sample rarefaction employed before Unifrac calculations, which 
potentially increases the stochasticity of the MOTUs being subsam-
pled and makes beta-diversity comparisons more prone to random 
effects. From a biological perspective, ASV pipelines offer signifi-
cant advantages for downstream ecological analyses where rarefac-
tion is employed as they tend to be more stable regardless of the 
rarefaction depth (Prodan et al., 2020). Furthermore, they strongly 
reduce the likelihood that sequencing artifacts and erroneous reads 
will be incorporated into diversity metrics that emphasize changes in 
the “rare biosphere” of low-read MOTUs. For alpha diversity specif-
ically, other methods may also be considered when comparing sam-
ple groups (e.g., distance which uses mean-pairwise distance [MPD] 
using a Bayesian approach; Hackmann, 2020).

For metabarcoding studies, sequencing technologies and bio-
informatics pipelines will inevitably continue to evolve. Our prime 
consideration was to assess the stability of biological inferences 
across historical (and future) shifts in computational workflows for 
MOTU generation. For published studies relying on cluster-based 
OTU methods, the recent shift from QIIME1 (where UCLUST is the 
default algorithm; (Caporaso et al., 2010) to QIIME2 (where VSearch 
is the default algorithm; (Bolyen et al., 2019) is not likely to have a 
significant impact on the downstream biological conclusions within 
this class of algorithm. OTU pipelines report similar (albeit highly 

inflated) levels of biodiversity, and results from UCLUST and VSearch 
were generally consistent regardless of study design and dataset 
complexity (HC vs LC datasets; Figures 2, 4–6). Major patterns of 
taxon abundance (Figure 3) and sample grouping (ordinations based 
on Bray–Curtis coefficient; Figure 7) were also unaffected by algo-
rithm class.

With the evolution of new algorithms in recent years, the 
metabarcoding and microbial ecology communities have rapidly 
shifted toward ASVs as a more stable and objective type of MOTU 
where reference sequences can be directly compared across stud-
ies (Callahan et al., 2017). OTUs are somewhat arbitrary “clouds” of 
sequence reads, and OTU membership can be heavily influenced 
by the specific parameters of the underlying algorithm, a phenom-
enon also shared by 16S rRNA datasets (Abellan-Schneyder et al., 
2021; He et al., 2015; Jackson et al., 2016). Surely, databases for ar-
chaea/bacteria are more complete when compared to eukaryotes, 
and this can potentially alleviate issues during OTU clustering and 
taxonomic assignments (Brandt et al., 2021). Furthermore, OTUs 
are dataset specific and not directly comparable across studies 
(Callahan et al., 2017). Our results confirm the significant biological 
advantages of ASV-generation algorithms: the improved error cor-
rection eliminates the artefactual “long tail” of rare sequences while 
maintaining species-specific barcodes (“Head” MOTUs with high 
relative abundance; (Porazinska et al., 2010). More importantly, 
ASVs do not completely eliminate rare MOTUs, and the remaining 
low-abundance reads can provide important biological insights re-
garding ecological interactions and population-level variation (e.g., 
patterns of intragenomic rRNA variation [Pereira et al., 2020; Qing 
et al., 2020], gut contents, and host-associated microbiome taxa 
[Schuelke et al., 2018]).

We specifically recommend the DADA2 pipeline for eukary-
otic metabarcoding studies, as the resulting ASV dataset appears 
to represent the best approximation of real biological patterns (and 
the number of distinct species present), especially for LC commu-
nities where the sequencing effort has likely reached saturation 
(Macheriotou et al., 2019; Pereira et al., 2020). The Deblur algorithm 
should be used with caution, however, since Deblur's optimization 
for fast computational speed has resulted in a tradeoff whereby bi-
ologically valid MOTUs (true positives) are overzealously eliminated 
from metabarcoding datasets. Further analysis of already published 
18S rRNA metabarcoding studies using the DADA2 pipeline may 
reveal compelling ecological and evolutionary insights for diverse 
eukaryotic taxa on a global scale given the increased biological accu-
racy of this method (e.g., shorter tail of rare MOTUs, less likely to be 
impacted by data complexity).

The present study focused on a metabarcoding locus optimized 
for microbial metazoa, targeting the V1–V2 regions of the 18S rRNA 
gene (Creer et al., 2010). It remains to be seen whether the observed 
bioinformatics patterns will extend to other rRNA loci and protein-
coding genes. For soil nematodes specifically, Kenmotsu et al. (2020) 
suggested that the amplification of regions V7-V9 (located at 3’ end 
of the 18S rRNA gene) followed by the analysis using DADA2 may 
produce the most realistic results. Future research efforts should 
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evaluate computational pipelines using other common metabarcoding 
genes (COI, 12S, rbcl, etc.) and 18S rRNA hypervariable regions (V4, 
V9, etc.) thus incorporating broader assessments of both nuclear and 
mitochondrial loci (e.g., PEMA pipeline; [Zafeiropoulos et al., 2020]). 
How dataset complexity influences bioinformatics outputs is likely to 
be distinct for metabarcoding loci such as COI, where Illumina data-
sets will inherently contain a high level of both population-level (e.g., 
gene haplotypes) and species-level (“Head” MOTUs) genetic varia-
tion. Although DADA2 performed well with both HC and LC datasets 
and therefore should be the chosen method for 18S rRNA metabar-
coding studies, our study also supports the long-held assumption 
that major biological and ecological patterns will tend to emerge from 
a well-designed metabarcoding study (Xiong & Zhan, 2018; Zinger 
et al., 2019), regardless of the underlying bioinformatics pipeline used 
for data analysis. Summarizing MOTU datasets by taxonomy assign-
ments (e.g., collapsing MOTUs at the genus or species level) appears 
to be a robust approach for avoiding any discrepancies that may 
arise across different computational pipelines (Jackson et al., 2016), 
and this approach may help to alleviate some of the observed diffi-
culties in analyzing rare MOTUs and LC datasets. However, such a 
taxonomy-dependent approach requires a comprehensive database 
of reference DNA barcodes (Ruppert et al., 2019). Unfortunately, 
current reference databases for common eukaryotic metabarcod-
ing loci are comparatively sparse and patchy (versus 16S rRNA gene 
databases for bacteria/archaea where most known genera are well 
represented; Bik, Porazinska et al., 2012; Macheriotou et al., 2019; 
Pereira et al., 2020). Improvement of eukaryotic reference databases, 
combined with a movement toward phylogeny-based biodiversity 
analyses, will help to further improve the ecological and evolutionary 
metrics that can be applied to metabarcoding studies.
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